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Abstract 
The purpose of this study was twofold: 1) investigate preservice teachers’ knowledge of the 

associative property for addition and multiplication and the distributive; 2) investigate 
preservice teachers’ knowledge of explicit and recursive representation of numerical pattern. In 
the Common-Core State Standard for Mathematics (CCSSM), fifth-grade students are expected 
to recognize the usefulness of number properties in simplifying and interpreting numerical 
expressions. In the CCSSM, fifth-grade students are also expected to learn to analyze patterns 
and relationships and to generate a numerical pattern given a rule. So, this study was conducted 
to examine preservice elementary teachers’ knowledge of the content they are eventually 
expected to teach. 

Keywords:  Preservice Elementary Teachers, Teacher Preparation, Early Algebra, Number 
Properties, Structural Properties, Structure, Pattern, Patterning, Modeling, Algebra 

Introduction 
Current standards and recommendations for elementary-school mathematics call for the 

inclusion of early algebra in the elementary-school curriculum. Early algebra refers to an 
elevated focus on algebraic thinking and algebraic concepts that are accessible to elementary-
school students (Carraher, Schliemann, & Schwartz, 2008). It is important to note that early 
algebra does not mean bringing traditional algebra, taught at the secondary-school level, to the 
elementary-school grades (Carraher et al., 2008). Advocates of early algebra, such as Maria 
Blanton and her colleagues, have contended that school algebra should be taken as a K–12 
content strand (Blanton & Kaput, 2005, 2011; Blanton et al., 2015). These advocates contend 
that taking school algebra as a K–12 learning experience allows students to “have long-term, 
sustained algebra experiences in school mathematics, beginning in the elementary grades” 
(Blanton et al., 2015, p. 40).  

The inclusion of early algebra in the school curriculum is evident in the recent standards put 
forward by the National Council of Teachers of Mathematics (NCTM) (2000, 2006) and in the 
Common Core State Standards for Mathematics (hereafter “CCSSM”) (National Governors 
Association Center for Best Practices, & Council of Chief State School Officers, 2010—
hereafter cited as “CCSSM, 2010”). The stated goal for school algebra in the NCTM (2000) 
Standards was for “instructional programs from pre-kindergarten through grade 12 [to] enable all 
students to— 

• understand patterns, relations, and functions; 
• represent and analyze mathematical situations and structures using algebraic 

symbols; 
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• use mathematical models to represent and understand quantitative relationships; 
• analyze change in various contexts” (p. 37). 

This goal is consistent with the perspective presented by Blanton et al. (2015) to formulate 
algebra education as a K–12 learning experience. Likewise, the CCSSM (2010) document 
included specified standards for school algebra in all grades. The inclusion of early algebra 
learning expectations is evident in the content strand labeled as Operations and Algebraic 
Thinking for grades K–5. Algebra learning expectations for middle-school students are specified 
as part of the Expressions and Equations content strand for grades 6–8. The CCSSM (2010) 
included a general standard for high school algebra.  

Research Focus 
The purpose of this study was to examine preservice elementary teachers’ readiness to teach 

concepts related to early algebra. The focus was on preservice teachers’ knowledge of content 
related to the modeling and structural aspects of early algebra. These two aspects of school 
algebra are evident in the NCTM (2000) Standards and in the CCSSM (2010) document. The 
NCTM (2000) Standard for algebra across all grades includes the requirement for instructional 
programs to ensure that all students were taught to reason mathematically in their endeavor to 
understand patterns, relations, functions, and structure in mathematics. CCSSM (2010) stated 
mathematical practices include: modeling with mathematics, looking for and using structure, and 
looking for and expressing regularity in repeated reasoning.  

In this study, I investigated preservice elementary teachers’ knowledge of structural 
properties, such as the associative properties for addition and multiplication and the distributive 
property for multiplication over addition, and their knowledge of explicit and recursive 
representations of numerical patterns. I contend that the inclusion of early algebra is the school 
curriculum without proper teacher preparation to teach early algebra is futile. Blanton et al. 
(2015) contended that the adoption of CCSSM (2010) in the absence of proper algebra 
instruction that meets the current standards would only leave students vulnerable to failure. 

Number Properties in the Common Core Standards 
Preparers of the common core standards for mathematics considered number properties so 

important that they included a glossary that contained a list of the pertinent number properties in 
school mathematics (see CCSSM, 2010, p. 90). The following CCSSM content standards for 
grades 1 and 3 contain language relating to the relevant number properties that are expected to be 
learned in the elementary-school grades.  

 
CCSS.MATH.CONTENT.1.OA.B.3 

Apply properties of operations as strategies to add and subtract. Examples: If 8 + 3 = 
11 is known, then 3 + 8 = 11 is also known (commutative property of addition). To add 2 
+ 6 + 4, the second two numbers can be added to make a ten, so 2 + 6 + 4 = 2 + 10 = 12 
(associative property of addition). (CCSSM, 2010, p. 15) 

 
CCSS.MATH.CONTENT.3.OA.B.5 

Apply properties of operations as strategies to multiply and divide. Examples: If 6 × 4 
= 24 is known, then 4 × 6 = 24 is also known (commutative property of multiplication). 3 
× 5 × 2 can be found by 3 × 5 = 15, then 15 × 2 = 30, or by 5 × 2 = 10, then 3 × 10 = 30 
(associative property of multiplication). Knowing that 8 × 5 = 40 and 8 × 2 = 16, one can 
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find 8 × 7 as 8 × (5 + 2) = (8 × 5) + (8 × 2) = 40 + 16 = 56 (distributive property). 
(CCSSM, 2010, p. 23) 

 
These are not the only standards related to number properties that were listed in the CCSSM 

(2010) for grades 1–5. This is a sample of what is expected to be learned about structural 
properties in the elementary-school grades. By the fifth grade, students are expected recognize 
the usefulness of structural properties in simplifying and interpreting numerical expressions 
without having to evaluate them. 

 
Modeling in the Common Core Standards 

The modeling aspect of school algebra has received the most attention in mathematics 
education research when compared to the structural aspect in the literature (Kanbir, Clements, & 
Ellerton, 2017). There are many researchers in the mathematics education community who have 
put forward the idea that algebra ought to be, and can be, successfully introduced in the 
elementary-school grades through the modeling and functional thinking approach (see, Blanton 
et al., 2015; Blanton & Kaput, 2011; Cai & Knuth, 2011; Kaput, 1998; Radford, 2006, 2011). 
The modeling aspect is evident across all grades in the CCSSM (2010) document. In the 
elementary-school curriculum, grade 3 students are expected to learn to “solve problems 
involving the four operations and identify and explain patterns in arithmetic” (CCSSM, 2010, p. 
23). Grade 4 students are expected to learn to generate and analyze patterns and to describe them 
both explicitly and recursively. Grade 5 students are expected to learn to analyze patterns and 
relationships and to generate a numerical pattern given a rule.  

 
CCSS.MATH.CONTENT.4.OA.C.5 

Generate a number or shape pattern that follows a given rule. Identify apparent 
features of the pattern that were not explicit in the rule itself. For example, given the rule 
"Add 3" and the starting number 1, generate terms in the resulting sequence and observe 
that the terms appear to alternate between odd and even numbers. Explain informally why 
the numbers will continue to alternate in this way. (CCSSM, 2010, p. 29) 

 
CCSS.MATH.CONTENT.5.OA.B.3 

Generate two numerical patterns using two given rules. Identify apparent 
relationships between corresponding terms. Form ordered pairs consisting of 
corresponding terms from the two patterns and graph the ordered pairs on a coordinate 
plane. For example, given the rule "Add 3" and the starting number 0, and given the rule 
"Add 6" and the starting number 0, generate terms in the resulting sequences, and observe 
that the terms in one sequence are twice the corresponding terms in the other sequence. 
Explain informally why this is so. (CCSSM, 2010, p. 35) 

 
These standards are presented to offer some insight of how the CCSSM (2010) treats the 

modeling aspect of school algebra. The standards presented above are those related to the 
explicit and recursive representations of numerical patterns. 

 
The Basis for the Present Study 

It should be evident from the discussion and presentation of samples from the CCSSM 
(2010) content standards for elementary-school grades that both the structure and modeling 
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treatments of algebra, and of mathematics in general, are emphasized in the common core 
standards for mathematics. Furthermore, early algebra researchers, such as Kaput and colleagues 
(see Kaput, 2008; Kaput, Carraher, & Blanton, 2008) have defined school algebra as the study of 
structures, including those stemming from arithmetic, and also as the study of patterns, functions, 
and relations. It is from this perspective that I frame the present study. This study is concerned 
with the early algebra content that preservice elementary teachers are expected to teach upon 
completion of their teacher education programs.  

In this study, I restricted my investigation to preservice teachers’ knowledge of structure and 
patterning in mathematics. The following definitions for structure and patterning were used in 
this study. Structure refers to the use of number properties to solve and simplify problems in 
algebra. Patterning refers to expression of numerical patterns explicitly and recursively, and the 
ability to generate patterns given their explicit and recursive rules. Explicit representation of 
patterns allows one to find the value of any term in the pattern given the rule. Recursive 
representations are those rules that allow one to find the nth term of the pattern when the previous 
term is already known, in addition to the first term.  

These definitions for structure and patterning are comparable to those used by Kanbir, 
Clements, and Ellerton (2017). Kanbir and colleagues investigated seventh-grade students’ 
knowledge and understandings of structural properties of real numbers and their ability to 
recognize and describe patterns explicitly and recursively. The present study is an investigation 
of whether preservice elementary teachers, in their final content-related mathematics methods 
course, can do the same. I investigated whether the participating preservice teachers had strong 
knowledge and understanding of structural properties, and whether they could represent number 
patterns explicitly and recursively. As previously shown, elementary-school students are 
expected to learn about number properties as well as explicit and recursive expressions of 
numerical patterns by the end of the fifth grade according to the Standards document prepared by 
CCSSM (2010). The theme of patterns, relations, functions, and structure in mathematics is 
evident across all grades in the NCTM (2000) Standards. So, if preservice elementary teachers 
are to be effective teachers, they must have thorough knowledge and strong understandings of 
the mathematics content that they are expected to teach upon completion of their teacher 
preparation programs.  

 
Related Literature 

Despite the revamping of mathematics school curricula to include early algebra, evidence 
from research indicate that students’ difficulties with algebra persist (Kanbir et al., 2017). It is 
not evident that the kind of algebra learning expected from the authors of the Standards 
documents (CCSSM, 2010; NCTM, 2000, 2006) is happening in the classrooms (Kanbir et al., 
2017). You (2006) attributed students’ challenges with school algebra to the kind of mathematics 
instruction they received in the schools. I contend that the algebra instruction recommended by 
the NCTM (2000) and in the CCSSM (2010) is not occurring in the elementary and middle-
school grades because many beginning teachers are not prepared to teach the mathematics 
recommended in the Standards documents. Ellerton and Clements (2011), for example, 
conducted a study investigating prospective middle-school mathematics teachers knowledge of 
equations and inequalities. They found that many of the preservice teachers seeking a middle-
school teacher certification who participated in their study did not have strong understandings of 
the mathematics they were expected to teach after completing their teacher education programs.  
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In the case for structural properties, Ding, Li, and Capraro (2013) and Ding (2016) conducted 
studies in which they investigated preservice teachers’ knowledge for teaching the associative 
property of multiplication. They found that the participating preservice teachers had trouble 
differentiating between the associative properties and the commutative properties. They also 
found that most preservice teachers in their studies “were unable to use concrete contexts (e.g., 
pictorial representations and word problems) to illustrate [the associative property] of 
multiplication conceptually, particularly due to a fragile understanding of multiplication” (p. 36). 
In their study, Ding et al. (2013) also found that the textbooks used by preservice teachers did not 
provide conceptual support for teaching the associative property of multiplication—both at the 
university and the elementary-school levels. 

The studies of Kanbir et al. (2017) and Ma (1999) support the idea that learning algebra is 
not a unidimensional trait. Kanbir et al. (2017) found that learning algebra from the structural 
perspective did not support the modeling aspect. Likewise, learning algebra from the modeling 
perspective did not support the structural aspect. To receive a full and comprehensive treatment 
of school algebra, students should be afforded opportunities to learn algebra from both the 
structural and modeling aspect. Ma (1999) contended that Chinese elementary-school teachers 
had stronger understandings of structure in elementary mathematics when compared to their 
counterparts in United States. Ma argued that an effective elementary-school teacher needed to 
attend to strong knowledge of structure in mathematics. Kanbir et al. (2017) proposed that if 
Ma’s (1999) claim were to be accepted, then knowledge of structure in algebra ought to be 
emphasized and given a significant level of focus in teacher preparation. In my study, I do not 
engage in the debate of which approach toward school algebra is more effective. I contend that 
students should be afforded the opportunities to experience algebra through both structure and 
modeling.  

 
Methods 

In this study, I investigated preservice elementary teachers’ knowledge of the associative 
properties for addition and multiplication and the distributive property. I also investigated what 
preservice elementary teachers (PETs) knew about explicit and recursive representation of 
number patterns before and after instruction. The following research questions were used to 
guide this study: 

1. Were there statistically significance differences in the overall performance of 
PETs on the pretest and posttest measures? 

2. Were there statistically significance differences in the performance of PETs on the 
structural components of the pretest and posttest measures? 

3. Were there statistically significance differences in the performance of PETs on the 
patterning components of the pretest and posttest measures? 

4. Were PETs able to recognize the usefulness of the associative properties for 
addition and multiplication, and the distributive property, in simplifying numerical 
expressions before instruction? 

5. What knowledge did the class of PETs exhibit about recursive and explicit 
representations of number patterns, before and after instruction? 

Study Design, Participants, and Procedure.  This study featured a pretest-posttest design. 
The data used in this study were based on performances on pre- and post-teaching algebra tests 
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that were administered to PETs. The PETs who participated in this study were enrolled in a 
mathematics methods course for preservice elementary teachers at a large public university in 
U.S. Midwest. This mathematics methods course (hereafter “MFT2”) was the final mathematics 
content-related course that the PETs were required to take in partial fulfilment of their teacher 
preparation program. In this program, there were two mathematics courses that were required for 
pre-service teachers, and MFT2 was the second and final course in the sequence. 

MFT2 was a semester-long course that was divided into three units: algebra, geometry, and 
measurement. Each of these units received about the same amount of instructional time. This 
study is concerned with the algebra unit of MFT2 which lasted for approximately 5 weeks. There 
were no measures taken to control who was enrolled in MFT2. Given the reality of the 
university’s procedures for course enrollment, PETs could not be randomly selected to join 
MFT2. Eighteen PETs were enrolled in the course. Seventeen of them gave permission to have 
their pre- and post-teaching algebra tests used in this study.  

The algebra unit of the MFT2 course included additional topics on number properties and 
patterning that were not part of the regular syllabus. The pre- and post-teaching algebra tests 
designed by Kanbir et al. (2017) were adopted and used in this study with permission. Kanbir et 
al. (2017) designed the tests to assess students’ knowledge and understanding of the associative 
properties for addition and multiplication and the distributive property as well as students’ 
knowledge of explicit and recursive representations of number patterns. Both the pretest and 
posttest had 15 questions. Question 12 had two parts to it, and question 14 had three parts to it. 
So, there was a total of 18 items on both tests. All 18 items were open-ended questions. PETs 
were given 1 hour to complete the pretest and posttest when each was administered.  

 
Data Analysis 

Responses to the pretest and posttest were coded for correctness as wells as strategy 
employed. After the responses had been coded for correctness, the pretest and posttest measures 
were scored, and each participating PET was assigned an overall score for each test. There were 
18 items on each of the tests used in this study; Nine of them pertained to the use of structural 
properties; and the other 9 items pertained to explicit and recursive representation of number 
patterns. Each participating PET was also assigned a score for structure and for pattern for both 
the pretest and posttest.  

After responses had been coded according to correctness, the overall score and scores related 
to the both structural and patterning components of both the pretest and posttest were recorded 
and analyzed quantitatively. Some of the questions, like those shown in Figure 1, were coded for 
both correctness and strategy. These types of questions were generally expected to be easy for 
PETs, but I was interested in examining whether strategies PETs used would change after 
instruction had taken place. 

 
Results 

Descriptive statistics of the pretest and posttest data are shown in Table 1. A paired-samples 
t-test was conducted to test for differences in the performance of PETs on the pretest and posttest 
measures. The paired-samples t-test was conducted three times to address the first, second, and 
third research questions. The first paired-samples t-test was conducted to test whether there was a 
significant difference in the overall performance of PETs on the pretest and posttest. This test 
was significant, t (16) = -5.59, n = 17, p < .001. There was a statistically significant difference in 
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the overall performance of PETs on the pretest and posttest. On average, pretest scores (M = 
11.29, SD = 2.76) were 3.71 points lower than posttest scores (M = 15.00, SD = 2.00).  

 
 

Pretest Posttest 
Q3: Suppose you were asked to calculate 

the value of 940 + (60 + 403) in your head 
(without writing anything down or using a 
calculator). How would you do it, and which 
property would you be using? 

Q15: What would be a quick method of 

finding the value of 64 × (
32
1  × 120), without 

using a calculator? 

Q3: Suppose you were asked to calculate 
the value of 920 + (80 + 533) in your head 
(without writing anything down or using a 
calculator). How would you do it, and which 
property would you be using? 

Q15: What would be a quick method of 

finding the value of 48 × (
24
1  × 150), without 

using a calculator? 
Figure 1. Sample of questions that were for both correctness and strategy. 

 
Table 1 

Descriptive Statistics of the Pretest and Posttest Data 
 

 Mean N SD SE 
Overall Pre-test 11.29 17 2.76 .668 

Post-test 15.00 17 2.00 .485 
Structure Pre-Test 6.76 17 1.35 .327 

Post-Test 8.18 17 1.02 .246 
Pattern Pre-Test 4.82 17 2.01 .487 

Post-Test 6.82 17 1.55 .376 
 
The second paired-samples t-test was conducted to test whether there was a significant 

difference in the performance of PETs on the structural components of the pretest and posttest. 
This test was also significant, t (16) = -3.59, n = 17, p = .002. There was a statistically significant 
difference in the performance of PETs on the structural components of the tests. On average, 
scores of the structural component on the pretest (M = 6.76, SD = 1.35) were 1.42 points lower 
than scores of the same component on the posttest (M = 8.18, SD = 1.02).  

The third paired-samples t-test was conducted to test whether there was a significant 
difference in the performance of PETs on the patterning component of both the pretest and 
posttest. This test was also significant, t (16) = -3.63, n = 17, p = .002. There was a statistically 
significant difference in the performance of PETs on the patterning components of the tests. On 
average, scores of the patterning component on the pretest (M = 4.82, SD = 2.00) were 2 points 
lower than scores of the same component on the posttest (M = 6.82, SD = 1.55). 

The fourth research question was addressed by examining the type of responses that PETs 
gave to select questions pertaining to structure on both the pretest and posttest. Figure 2 contains 
samples of questions pertaining to number structure that were in the pretest and posttest. 
Question 3 (Q3) was assessing PETs ability to recognize that the associative property (AP) for 
addition would be useful in simplifying the given number expression. Categorization of PETs 
responses to Q3 on the pretest and posttest is presented in Table 2. On the pretest, some of the 
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respondents recognized the usefulness of associative property for addition. However, most of the 
respondent relied on the mnemonic PEMDAS (Parenthesis, Exponents, Multiplication or 
Division, and Addition or Subtraction) or some other strategy. On the posttest, nearly all the 
respondents applied the associative property for addition to simplify the number expression in 
Q3.  

 
Pretest Posttest 

Q3: Suppose you were asked to calculate 
the value of 940 + (60 + 403) in your head 
(without writing anything down or using a 
calculator). How would you do it, and which 
property would you be using? 

Q13: What would be a quick method of 
finding the value of 7 × 97 + 7 × 3 without 
using a calculator? What is the property 
which allows you to use that quick method? 

Q15: What would be a quick method of 

finding the value of 64 × (
32
1  × 120), without 

using a calculator? 

Q3: Suppose you were asked to calculate 
the value of 920 + (80 + 533) in your head 
(without writing anything down or using a 
calculator). How would you do it, and which 
property would you be using? 

Q13: What would be a quick method of 
finding the value of 8 × 96 + 8 × 4 without 
using a calculator? What is the property 
which allows you to use that quick method? 

Q15: What would be a quick method of 

finding the value of 48 × (
24
1  × 150), without 

using a calculator? 
Figure 2. Sample of questions pertaining to number structure. 

 
Table 2 

Categorization of Responses to Q3 
   
 Frequency Percent 
Pre-Test Correct, PEMDAS 7 41.2 

Correct, AP 5 29.4 
Correct, Other 3 17.6 
Incorrect, PEMDAS 1 5.9 
Incorrect, Other 1 5.9 
Total 17 100.0 

Post-Test Correct, AP 16 94.1 
Incorrect, AP 1 5.9 
Total 17 100.0 

 
Even though some of the PETs recognized that the associative property for addition could be 

applied to Q3 on pretest, many of them were not able to name the property before instruction. A 
sample response to Q3 on the pretest is presented in Figure 3. This observation was not unique to 
Q3. Similar observations were made on similar question-items. For Question 13 (Q13), PETs 
were expected to recognize that the distributive property (DP) would be useful in simplifying the 
given number expression. Table 3 shows the categorization of PETs responses to Q13 on the 
pretest and posttest. On the pretest, none of the respondents recognized the usefulness of the 
distributive property. Most of the respondent relied on PEMDAS or some other strategy. On the 
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posttest, nearly all the respondents applied the distributive property to simplify the number 
expression in Q3. 

 

 
Figure 3. Sample response to Q3 on pretest. 

 

Table 3 
Categorization of Responses to Q13 

   
 Frequency Percent 
Pre-Test Correct, PEMDAS 4 23.5 

Correct, Other 2 11.8 
Incorrect, PEMDAS 2 11.8 
Incorrect, DP 1 5.9 
Incorrect, Other 8 47.1 
Total 17 100.0 

Post-Test Correct, DP 16 94.1 
Incorrect, DP 1 5.9 
Total 17 100.0 

 
Question 15 (Q15) was assessing PETs ability to recognize that the associative property (AP) 

for multiplication would be useful in simplifying the given number expression. Table 4 below 
show categorization of PETs responses to Q15 on the pretest and posttest, respectively. On the 
pretest, some of the respondents recognized the usefulness of associative property for 
multiplication. However, most of the respondent relied on PEMDAS or some other strategy. On 
the posttest, nearly all the respondents applied the associative property for multiplication to 
simplify the number expression in Q15. On both the pretest and posttest, one of the PETs 
incorrectly applied the distributive property to Q15. 

The fifth research question was addressed by examining the type of responses that PETs gave 
to questions pertaining to pattern in algebra on both the pretest and posttest. Figure 4 contains 
samples of questions about patterning that were in the pretest and posttest. A majority of the 
participating PETs answered Question 4 (Q4) correctly on the pretest. However, many of them 
had circled the question-item or had placed a question mark or some other indicator around Q4. 
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Table 4 
Categorization of Responses to Q 15 

 Frequency Percent 
Pre-Test Correct, PEMDAS 3 17.6 

Correct, AP 6 35.3 
Incorrect, PEMDAS 5 29.4 
Incorrect, Other 2 11.8 
Incorrect, DP 1 5.9 
Total 17 100.0 

Post-Test Correct, AP 14 82.4 
Incorrect, AP 1 5.9 
Incorrect, Other 1 5.9 
Incorrect, DP 1 5.9 
Total 17 100.0 

 
A sample response to Q4 on the pretest is presented in Figure 5. I hypothesize that many of the 
PETs had seen this type of problem in their prior algebra experience, but the subscript notation 
was new to them. So, this new notation may have created confusion about was expected for Q4. 
On posttest, all responses to Q4 were correct. 
 

Pretest Posttest 
Q4: If Sn = 101 + 50n, where n can be any 

whole number, what is the value of S4? 
Q5: A student is creating towers out of unit 

cubes. Each unit cube, by itself, has 6 square 
faces, but when two unit cubes are stuck together, 
one exactly on top of the other, there are only 10 
faces in the tower (including the top and the 
bottom). The first tower has 1 unit cube and 6 
faces. The second tower has 2 unit cubes, one on 
top of the other, and the third tower has 3 unit 
cubes, etc. We say that the surface area of the first 
tower is 6 units, of the second tower is 10 units, 
etc. 

What is the surface area of a tower with 50 cubes? 
 
Q6: If Tn = 2n + 5, what is value of Tn + 1 – Tn? 

Q4: If Sn = 102 + 40n, where n can be any 
whole number, what is the value of S5? 

Q5: A student is creating towers out of unit 
cubes. Each unit cube, by itself, has 6 square 
faces, but when two unit cubes are stuck together, 
one exactly on top of the other, there are only 10 
faces in the tower (including the top and the 
bottom). The first tower has 1 unit cube and 6 
faces. The second tower has 2 unit cubes, one on 
top of the other, and the third tower has 3 unit 
cubes, etc. We say that the surface area of the first 
tower is 6 units, of the second tower is 10 units, 
etc. 

What is the surface area of a tower with 50 cubes? 
 
Q6: If Tn = 3n + 4, what is value of Tn +1 – Tn? 

Figure 4. Sample of questions pertaining to number pattern. 
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Figure 5. Sample response to Q4 on pretest. 

 
On the pretest, only 41% of the responses to Question 5 (Q5) were correct. There were 

various reasons PETs incorrectly answered Q5. Some of the PETs tried to answer this question 
through systematic brute force; they tried to list the number of square faces for all stackings of 
cubes from a tower of 1 cube to a tower of 50 cubes. Some of the PETs overcounted the number 
of square faces as more cubes were added to the tower; they included the bottom face that is no 
longer counted once the cube has been stacked to the tower. Most of those who correctly 
answered Q5 on the pretest were able to do so because they identified the appropriate rule for 
generalization. On the posttest, 82% of the responses to Q5 were correct. Question 6 (Q6) was 
especially challenging to PETs both before and after instruction. All of the responses to Q6 on 
the pretest were incorrect, and only 29% of the responses were correct on the posttest.  

 
Discussion 

The results of this study show that the participating preservice elementary teachers did not 
have strong understandings of the usefulness of the associative and distributive properties in 
simplifying numerical expressions at the pretest stage. According to intended curriculum in the 
CCSSM (2010) documents, fifth-grade students are expected to recognize the usefulness of 
number properties in simplifying and interpreting numerical expressions. There is reason to 
suspect that this is not happening in schools. Kanbir et al. (2017) found that seventh-grade 
students in their study, at the pre-intervention stage, hardly had any knowledge of the associative 
and distributive properties and were not able to recognize the usefulness of these properties in 
simplifying expressions. The preservice elementary teachers that were part of this study had 
completed their elementary and secondary-school education in the Standards era, and yet they 
did not have thorough understandings of the applicability of number properties prior to 
instruction. This indicates that the NCTM (2000, 2006) and CCSSM (2010) intended curriculum 
had not had the effect that was desired by those who prepared the Standards documents.  

Similarly, these participating preservice elementary teachers did not have strong knowledge 
of number pattern prior to instruction. In the CCSSM (2010) document, fifth-grade students are 
expected to learn to analyze patterns and relationships and to generate a numerical pattern given 
a rule. Kanbir et al. (2017) found that seventh-grade students in their study, at the pre-
intervention stage, scarcely had any knowledge of recursive or explicit representation of patterns. 
Blanton et al. (2015) wrote that poor preparation of teachers to teach early algebra would only 
leave young students vulnerable to failure. I contend that the failure had occurred. The remedy is 
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to ensure preservice teachers are afforded adequate support and learning opportunities to meet 
the current standards for early algebra.  

 
Implications 

Because of the design of this study, it would not be appropriate to make far-reaching claims 
about all preservice elementary teachers. The sample of preservice elementary teachers that 
participated in this study was not randomly selected. Because of the nature of enrollment at the 
university where this study was conducted, it was not possible to randomly select those who 
would enroll in MFT2. However, the results of this study are still useful and meaningful. These 
results indicate that the class of preservice teachers that was the subject of this investigation did 
not have thorough understanding, at the pretest stage, of the content they were eventually 
expected to teach. The MFT2 was helpful to the preservice teachers that took part in the course. 
Statistical results indicate that there were statistically significant pretest-posttest gains. Similar 
investigations are recommended with different samples of preservice elementary teachers at 
different teacher preparation programs. Further investigations with a retention component, like 
that reported by Kanbir et al. (2017), would be particularly illuminating on whether preservice 
teachers retain new knowledge several weeks after instruction has taken place. 
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