Chapter 3 Elementary Number Theory

The expression lcm(m,n) stands for the least integer which is a multiple of both the integers m and n. The expression gcd(m,n) stands for the biggest integer that divides both m and n.

Exercise. Find lcm and gcd in the TI-85 CATALOG and place them into your custom catalog.

Following the procedures of the first two chapters, compute each of the following integers.

1.	gcd(6,8)	B&P	SGC	CAS
2.	lcm(6,8)			
3.	gcd(6,8)1cm	(6,8)		
4.	gcd(140,429	9)		
5.	lcm(140,429	9)		
6.	#4 * #5			
7.	140*429			

Exercise. Experiment with several different pairs of integers m and n computing gcd(m,n)*lcm(m,n) and m*n. What relationship is suggested by your experiment?

I think it's time to forget the pencil computations and rely solely on the technology and our brains. Don't you agree?

An integer is said to be <u>prime</u> if its only divisors are 1 and itself. For example 2,3,5,&7 are the only primes less than 10. What are the primes between 10 and 20?____

The MAPLE command "isprime" determines whether or not a given integer is prime. Use it to see if the following numbers are prime: 29, 35, 1537, your ss#, 10!+1, 329891					
The FUNDAMENTAL THEOREM OF ARITHMETIC states that every integer can be factored in a unique way into a product of powers of primes. Exercise. Use paper and pencil, aided by the TI-85 if necessary, to write each of the following numbers as a product of powers of primes: i. 10!=					
ii. 340704=					
The MAPLE command "ifactor" does this automatically. Now use it to compute the prime factorization for each of I & ii above as well as for iii. 10!+1=					
and iv. your ss# =					
(Notice how just adding 1 to 10! reduced the number of prime factors.)					
For two integers m & n with n>m we say the remainder of n divided by m is r if n = qm + r, for integers q &r with $0 \le r < m$. In MAPLE this remainder is denoted by "n mod m". In the TI-85 CATALOG it is denoted by "mod(n,m)".					
<pre>Exercise. With paper and pencil compute the following remainders: 24 mod 5 = 156 mod 7 =</pre>					
32 mod 2 = 57 mod 2 =					
Now use the appropriate commands to verify these results with both the TI-85 and MAPLE.					
Compute each of the following remainders using the TI-85 first and MAPLE next, as usual. 19. 13200 mod 134					
20. (12 ³ +53) mod 26					

21. 400*23 mod 19
22. 1321 mod (5*7)
23. 45^16 mod 4
Exercise. Which answer in number 23 do you think is correct? Explain
Exercise. Explain why an integer n is even exactly when n mod 2 =0, and n is odd exactly when n mod 2 =1.
Recall the statement of the BINOMIAL THEOREM.
$(m + n)^k =$
Exercise. Use the binomial theorem to explicitly expand, (ie. compute the binomial coefficients) i. $(x + y)^3 =$
and ii. (n +1)^4=
Exercise. Explain why every power of an odd integer must be an odd integer also.
You should be able to compute each of the following using brain only. Do so and then check your answer using both technologies. Record your results in the appropriate places.
Brain SGC CAS 24. 1342 mod 2
25. (10!+1) mod 2

26.	27^7 mod 2
27.	27^9 mod 2
28.	27^11 mod 2
	cise. Explain why the TI-85 thinks 27 ¹ 11 is even, we, and MAPLE, know better.

Reflection: 1. What are the main things you learned from Chapter 3?

2. What's the hardest thing to understand from Chapter 3?