MATH 1351 TI-85 EXERCISE XII
The TI-85 and Riemann Sums

Name: ___________________________ SID: _____________________________

Let’s estimate the areas under the graphs of some positive functions, above the x-axis, and between some x-values, say a and b. We’ll do it by drawing rectangles called right boxes, whose right edge, hence height, is determined by the graph, and bases are the same lengths, Δx.

1. Use two such boxes (computing by hand) to approximate the area under the graph of $y = 1/x$, from $x = 1$ to $x = 3$. In fraction form the approximate is _________

2. Repeat the exercise using 3 boxes. In fraction form the approximate is _________

3. Repeat the exercise using 4 boxes. In fraction form the approximate is _________

Find the TI-85 command seq by choosing 2nd MATH from the keyboard, then MISC from the screen menu. Enter the following command sequence onto the screen:

$$\text{seq}((2/2)(1/(1+I(2/2))), I, 1, 2, 1)$$

Press ENTER and then convert the answer to fraction form. You should see the terms summed in problem 1. From the same place your found seq find sum. Choosing sum 2nd ANS should sum the sequence found above and yield the same result as in number 1. Does it? _________

Now use the TI to repeat numbers 2 and 3 above. The general syntax is

$$\text{seq}(\Delta x f(a + I \Delta x), I, 1, N, 1)$$

where N is the number of boxes and $\Delta x = (b - a) / N$.

4. Estimate the above area using 10 boxes. In fraction form the approximate is _________

5. Estimate the above area using 100 boxes. In fraction form the approximate is _________

 Use 100 boxes to estimate each of the following areas:

6. The area under one positive loop of the graph of the sine curve. The approximation is _________

7. The area under $y = x^5$ from $x = 0$ to $x = 2$. The approximation is _________

8. The area of the finite region determined by the x-axis and the graph of $y = x^4 - 2x^2 + 1$. The approximation is _________

9. The area under $y = e^{x^2}$ from $x = -1$ to $x = 1$. The approximation is _________

 What would be the syntax if we were using left boxes instead of right boxes to approximate the area?