In Section 1 of Chapter 3 we learned that the derivative of a function \(f \) at the input value \(x \) is the limiting value of the slopes of the chords drawn from \((x, f(x))\) to nearby points on the graph. This slope from \((x, f(x))\) to the nearby point \((x + h, f(x + h))\) is the difference quotient

\[
DQ: \frac{(f(x + h) - f(x))}{h}
\]

for small positive and negative values of \(h \). And its’ limiting value we defined to be the slope of the tangent line to the graph at \((x, f(x))\).

Also in Section 1, we saw how to find a formula for this derivative in terms of the value \(x \) for some very simple functions. Here we will try to conjecture what such a derivative formula might be for a much more sophisticated function; namely, we’ll consider the function \(f(x) = \ln(x) \).

We’ll investigate the limit of the difference quotient at the three values \(x = 1, 2, \) & 3.

1. Compute each of the difference quotients for \(f(x) = \ln(x) \) directly:

 - for \(x = 1 \) & \(h = 10^{-10} \)
 \[DQ = \text{________________________} \]
 - for \(x = 1 \) & \(h = -10^{-10} \)
 \[DQ = \text{________________________} \]
 - for \(x = 2 \) & \(h = 10^{-10} \)
 \[DQ = \text{________________________} \]
 - for \(x = 2 \) & \(h = -10^{-10} \)
 \[DQ = \text{________________________} \]
 - for \(x = 3 \) & \(h = 10^{-10} \)
 \[DQ = \text{________________________} \]
 - for \(x = 3 \) & \(h = -10^{-10} \)
 \[DQ = \text{________________________} \]

2. Sketch the graph of each DQ for each value of \(x = 1, 2, \) & 3 and use ZOOM and TRACE to estimate the value near 0. (The variable in each DQ is \(h \), but the TI-85 recognizes only \(x \) as an independent variable. So we have to replace \(h \) in the above DQ with \(x \). This shouldn’t be too confusing since the \(x \) in the above DQ is to be replaced with the numbers 1, 2, & 3 anyway.)

So the graph of DQ corresponding to the point \((1, \ln(1))\) is the graph of

\[
y = \left(\ln(1 + x) - \ln(1) \right) / x \quad \text{and} \quad \text{limit as } x \to 0 \approx \text{________________________}
\]

At the point \((2, \ln(2))\) the graph is that of

\[
y = \left(\ln(2 + x) - \ln(2) \right) / x \quad \text{limit as } x \to 0 \approx \text{________________________}
\]

At the point \((3, \ln(3))\) the graph is that of

\[
y = \left(\ln(3 + x) - \ln(3) \right) / x \quad \text{limit as } x \to 0 \approx \text{________________________}
\]

3. Finally, simply sketch the graph of \(y = \ln(x) \) in the ZDECM window. Choose MATH from the screen menu, then choose dy/dx from the MATH screen menu. TRACE is automatically activated. Move the cursor to \(x = 1 \) and press ENTER. Do the same for each of \(x = 2 \) and \(x = 3 \). We obtain dy/dx = _______ at \(x = 1 \), dy/dx = _______ at \(x = 2 \), and dy/dx = _______ at \(x = 3 \).

What appears to be the relationship between the value of \(x \) and that of dy/dx for \(y = \ln(x) \)? _______