The relationship between a function and its’ first and second derivatives is often central to the use of these concepts in practice. Thus it might be nice to view the graphs of all three functions on the same axes. There are several ways to graph a function \(y = f(x) \) together with its’ first derivative, \(y = f'(x) \), and its’ second derivative, \(y = f''(x) \), on the TI-85. We will explore these three ways by considering a very simple example:

\[f(x) = x^2 - 2x + 1. \]

(For each of the following exercises use the SimulG and DrawLine options from the FORMT menu. This lets you “see” the relation between the function and its’ derivatives as the points are being plotted. Of course you have to figure out which is which.)

Way 1. Define \(y_1 = f(x) \), compute the derivatives directly (by hand) and define \(y_2 = f'(x) \) and \(y_3 = f''(x) \) and graph them.

In our example this means \(y_1 = x^2 - 2x + 1 \), \(y_2 = 2x - 2 \) and \(y_3 = 2 \). Sketch the resulting graphs in the RANGE \(-3.15 < x < 3.15\) and \(-5 < y < .5\).

What is the relation between the sign of \(y_2 \) and the behavior of the graph of \(y_1 \)?

How is \(y_3 \) related to \(y_2 \)?

Way 2. Define \(y_1 = f(x) \), \(y_2 = \text{nDer}(y_1,x) \), and \(y_3 = \text{nDer}(y_2,x) \). (nDer stands for *numerical derivative* and is found in the Calculus menu which is accessed by choosing 2nd CALC from the keyboard. So \(y_3 \) is the derivative of the derivative of \(y_1 \), hence the second derivative of \(y_1 \).)

In our example, again \(y_1 = x^2 - 2x + 1 \), \(y_2 = \text{nDer}(y_1,x) \), and \(y_3 = \text{nDer}(y_2,x) \). (Notice that this has the advantage of allowing us to change the function \(y_1 \) and \(y_2 \) will automatically be the derivative of the new \(y_1 \) and \(y_3 \) its’ second derivative.) The graphs should be the same as above. If not you did something wrong, check it out.

Way 3. Define \(y_1 = f(x) \), \(y_2 = \text{der1}(y_1,x) \) and \(y_3 = \text{der2}(y_1,x) \). (der1 stands for the first derivative and der2 stands for the second derivative. Both are found in the same place as nDer.)

In our example, again \(y_1 = x^2 - 2x + 1 \), \(y_2 = \text{der1}(y_1,x) \) and \(y_3 = \text{der2}(y_1,x) \). (Again this has the advantage of allowing us to change the function \(y_1 \) and \(y_2 \) will automatically be the first derivative and \(y_3 \) the second derivative of the new \(y_1 \).) The graphs should be the same as above.
If not you did something wrong, check it out.

This begs the question: “What’s the difference between the programs nDer and der1? The answer is a bit technical, but is needed to explain several apparent deficiencies we may observe in using these packages. The program nDer computes a very particular difference quotient to obtain a numerical approximation to the derivative:

\[nDer(f(x),x) = \frac{f(x + \delta) - f(x - \delta)}{2 \delta} \]

for a numerical value of \(\delta \) which we can set. (The default value of \(\delta \) is .001. To check the setting in your machine choose 2nd TOLER (short for tolerance) from the keyboard. If \(\delta = .001 \), go back to GRAPH, otherwise set \(\delta \) to be .001 by arrowing down to it and changing it to .001.)

The der1 program apparently looks through some stored set of functions for a formula for the derivative of \(f(x) \) and, if it can find such a formula, uses it to compute derivative.

There are advantages and disadvantages to each program. If der1 can’t find a stored formula it will not work, while nDer works on any function you can define. However nDer can give some very misleading; indeed, flat wrong answers. To illustrate let’s look at some examples we can analyze by hand and then see what the machine does with each package.

Define \(y_1 = \text{abs}(x-1) + 1 \).

What is the value of \(\frac{dy_1}{dx} (x) \) for any value of \(x < 1 \)?

What is the value of \(\frac{dy_1}{dx} (x) \) for any value of \(x > 1 \)?

What is the value of \(\frac{dy_1}{dx} (x) \) for the value \(x = 1 \)?

Graph \(y_2 = \text{der1}(y_1,x) \) in the ZDECM window. Sketch this graph.

Use TRACE to find the value of \(y_2 \) corresponding to each of the following values of \(x \):
\[x = .8 \rightarrow y = ; x = .9 \rightarrow y = ; x = 1 \rightarrow y = ; x = 1.1 \rightarrow y = ; x = 1.2 \rightarrow y = \]

For comparison graph \(y_2 = \text{nDer}(y_1,x) \) in the same window. The graph should look the same; however there is a significant difference in the TI-85 picture. Again use TRACH to find the value of \(y_2 \) corresponding to each of the following values of \(x \):
\[x = .8 \rightarrow y = ; x = .9 \rightarrow y = ; x = 1 \rightarrow y = ; x = 1.1 \rightarrow y = ; x = 1.2 \rightarrow y = \]

Explain why nDer “thinks” the derivative of this function at \(x = 1 \) is 0.(We know it is not defined there because the left and right limits of the DQ don’t match up at \(x = 1 \).)
A more interesting wrong response for nDer is illustrated by the following example: \(y_1 = (1/x)^2 \). Notice that nDer thinks the derivative at the \(x = 0 \) is 0 even though the function is not even defined at 0. In fact if anything the derivative at 0 should be infinity since the graph is asymptotic to the y axis there. Notice that der1 correctly yields the derivative of \(y_1 \) undefined at \(x = 0 \).

In fact if \(f \) is any even function, then nDer thinks that \(f'(0) = 0 \). Why?

Sometimes der1 gives no information at all. For example where is the derivative of \(y = \text{int} (x) \) defined? And what is its value where it is defined? Try graphing \(y_1 = \text{int} (x) \) and \(y_2 = \text{der1}(y_1,x) \). What happens? Now try graphing \(y_2 = \text{nDer}(y_1,x) \)? (Use DrawLine format.) What happens? Sketch the graph of \(y_2 = \text{nDer}(y_1,x) \). Explain this curious graph.

Where are the “spikes?” How high up do they go? Why?

For each of the following functions sketch the graph of the function and its’ first and second derivatives on the same axes. Label each.

1. \(f(x) = x^3 - 3 x^2 + 2 \)

2. \(f(x) = x / (x + 1) \)

3. \(f(x) = (x^3 - 1) / (x^2 - 4) \)